Leakage Current in Deep-Submicron CMOS Circuits

نویسندگان

  • Kaushik Roy
  • Saibal Mukhopadhyay
  • Hamid Mahmoodi
چکیده

The high leakage current in deep submicron regimes is becoming a significant contributor to the power dissipation of CMOS circuits as the threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, the identification and modeling of different leakage components is very important for the estimation and reduction of leakage power, especially in the low power applications. This paper explores the various transistor intrinsic leakage mechanisms including the weak inversion, the drain-induced barrier lowering, the gate-induced drain leakage, and the gate oxide tunneling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design

Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance ...

متن کامل

Design and Implementation of Low Leakage SRAM Acrhitectures using CMOS VLSI Circuits in Different Technology Environment

There is a demand for portable devices like mobiles and laptops etc. and their long battery life. For high integrity CMOS VLSI circuit design in deep submicron regime, feature size is reduced according to the improved technology. Reduced feature size devices need low power for their operation. Reduced power supply, reduces the threshold voltage of the device. Low threshold devices have improved...

متن کامل

Ip-sram Architecture at Deep Submicron Cmos Technology – a Low Power Design

The growing demand for high density VLSI circuits the leakage current on the oxide thickness is becoming a major challenge in deep-sub-micron CMOS technology. In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip‟s total power consumption. Motivated by emerging battery-operated application on one hand and shrinking techn...

متن کامل

Design of Leakage Power Reduced Static RAM using LECTOR

The scaling down of technology in CMOS circuits, results in the down scaling of threshold voltage thereby increasing the sub-threshold leakage current. LECTOR is a technique for designing CMOS circuits in order to reduce the leakage current without affecting the dynamic power dissipation, which made LECTOR a better technique in leakage power reduction when compared to all other existing leakage...

متن کامل

Leakage Control for Deep-Submicron Circuits

High leakage current in deep sub-micron regimes is becoming a significant contributor to power dissipation of CMOS circuits as threshold voltage, channel length, and gate oxide thickness are reduced. Consequently, leakage control and reduction are very important, especially for low power applications. The reduction in leakage current has to be achieved using both process and circuit level techn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Circuits, Systems, and Computers

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2002